### Building & Testing the SATNOGS Rotor Mike Pecorini, KD2RPE & Ralph Iden, WB9ICF



#### What is SatNOGS?



- SatNOGS is an open source ground station and network project.
- The SatNOGS network of ground stations are focused on Low Earth Orbit (LEO) satellites, including amateur radio birds.
- Components are designed to be built from readily available and affordable as well.

#### **SatNOGS Rotator Specs**



- AZ/EL speed of 7 degrees per second.
- 11" x 5.5" x 5.5" and ~11 pounds.
- 2020 Aluminum T-Slot and 3D printed construction.
- NEMA 17 stepper or DC motors
- Can be built for \$200 or less.
- <u>https://wiki.satnogs.org/SatNOGS\_Rota</u> tor\_v3#Mechanical\_Analysis\_.5BWIP.5D







### **Project Goals & Objectives**

- Successfully build and test rotor.
- Present project at the May 2020 MCWA meeting.
- Do actual field testing at Field Day.
- Bring to the Lake County Maker Faire as part of MCWA's exhibit.
- Practice our project management and maker skills.
- Learn new things.

### Planning the project



- Complicated projects require planning.
- Started out as a face-to-face napkin meeting to outline our ideas.
- Identified goals, milestones, and the overall timeline.
- A comprehensive Bill of Materials was needed.
- Tasks and responsibilities were identified.
- A project communication mechanism was needed (Slack)

#### Materials to be used

- 20 mm x 20 mm aluminum extruded T-Slot for frame.
- Stainless steel hardware for rust prevention.
- Weatherproof enclosure for electronics.
- Filament material for most parts was PETG
  - Design called for ABS, but printing ABS would prove challenging in the Winter.
  - PETG was thought to be a good choice as it is more durable than ABS.
  - Using PETG did take away the option to use an Acetone cloud to smooth the parts.
  - Nylon 12 was used for two parts (the worm gears) due to its fatigue resistance.

#### December 2019



- Planning began in earnest.
- A face-to-face kickoff meeting was held to develop the general plan.
- A dedicated Slack channel for the project was established.
- The Bill of Materials was started and items were checked off as they were acquired.
- Took a couple of weeks off for Christmas and prototyping the updated MCWA website.

| Part        | Qty<br>To<br>Buy | Qty In<br>project | Sold in<br>Packs of | Unit of<br>Measure | Distributor | Ref        | Distribut<br>or Ref | Project<br>Section | Price |       | Cost to<br>Project |       | Status   | atNOGS Li   | Mike Link   |
|-------------|------------------|-------------------|---------------------|--------------------|-------------|------------|---------------------|--------------------|-------|-------|--------------------|-------|----------|-------------|-------------|
| Aluminum    | 2                | 2                 | 1                   | PCE                | Motedis     | 1-1 and C1 | 2287                | Hardware           | \$    | 0.90  | \$                 | 1.80  | Received | https://www | w.motedis.c |
| Shaft Side  | 4                | 4                 | 1                   | PCE                |             | C1010-3    | (                   | Custom Par         | \$    | 1.26  | \$                 | 5.06  | Complete |             |             |
| Shaft Side  | 4                | 4                 | 1                   | PCE                |             | C1011-3    | (                   | Custom Par         | \$    | 0.27  | \$                 | 1.08  | Complete |             |             |
| Worm Whe    | 2                | 2                 | 1                   | PCE                |             | C1020-1    | (                   | Custom Par         | \$    | 1.28  | \$                 | 2.56  | Complete |             |             |
| Shaft Colla | 2                | 2                 | 1                   | PCE                |             | C1021-1    | (                   | Custom Par         | \$    | 0.54  | \$                 | 1.08  | Complete |             |             |
| Shaft Was   | 2                | 2                 | 1                   | PCE                |             | C1022-1    | (                   | Custom Par         | \$    | 0.09  | \$                 | 0.18  | Complete |             |             |
| Motor Mou   | 2                | 2                 | 1                   | PCE                |             | C1030-1    | (                   | Custom Par         | \$    | 0.60  | \$                 | 1.20  | Complete |             |             |
| Encoder G   | 2                | 2                 | 1                   | PCE                |             | C1040-1    | (                   | Custom Par         | \$    | 0.57  | \$                 | 1.14  | Complete |             |             |
| Homing Pi   | 2                | 2                 | 1                   | PCE                |             | C1041-1    | (                   | Custom Par         | \$    | 0.03  | \$                 | 0.06  | Complete |             |             |
| End-Stop I  | 2                | 2                 | 1                   | PCE                |             | C1042-1    | (                   | Custom Par         | \$    | 0.10  | \$                 | 0.20  | Complete |             |             |
| Encoder M   | 2                | 2                 | 1                   | PCE                |             | C1043-1    |                     | Custom Par         | \$    | 0.37  | \$                 | 0.74  | Complete |             |             |
| Aluminum    | 18               | 18                | 1                   | PCE                | Motedis     | C1050-1    | 22206               | <b>Sustom Par</b>  | \$    | 1.25  | \$                 | 22.50 | Received | https://www | https://www |
| Aluminum    | 8                | 8                 | 1                   | PCE                | Motedis     | C1050-5    | 22206               | <b>Justom Par</b>  | \$    | 1.73  | \$                 | 13.84 | Received | https://www | https://www |
| Threaded r  | 1                | 1                 | 1                   | m                  |             | C1060-1    |                     | Hardware           | \$    | 2.50  | \$                 | 2.50  |          |             | https://www |
| Worm Mou    | 4                | 4                 | 1                   | PCE                | C106        | 1-5 and C1 | 061-6               | Custom Par         | \$    | 0.44  | \$                 | 1.76  | Complete |             |             |
| Worm Gea    | 2                | 2                 | 1                   | PCE                |             | C1062-1    | (                   | Custom Par         | \$    | 17.81 | \$                 | 35.62 | Complete | https://www | w.shapeway  |
| Deep groov  | 4                | 4                 | 1                   | PCE                |             | H1011-1    |                     | Hardware           | \$    | 0.60  | \$                 | 2.40  | Received |             | https://www |
| Deep groov  | 4                | 4                 | 1                   | PCE                |             | H1012-1    |                     | Hardware           | \$    | 4.99  | \$                 | 19.96 | Received |             | https://www |
| Inner brack | 40               | 40                | 1                   | PCE                | Motedis     | H1020-1    | 09919006            | Hardware           | \$    | 0.75  | \$                 | 30.00 | Ordered  | https://www | https://www |
| T-nut B-tyr | 0                | 36                | 1                   | PCE                | Motedis     | H1021-1    | 096H0641<br>0       | Hardware           | \$    | 0.09  | \$                 | -     | Received | https://www | https://www |
| M5 Nut DI   | 4                | 4                 | 1                   | PCE                |             | H1030-1    |                     | Hardware           | \$    | 0.03  | \$                 | 0.12  |          |             |             |
| M5 Washe    | 6                | 6                 | 1                   | PCE                |             | H1031-1    |                     | Hardware           | \$    | 0.03  | \$                 | 0.18  |          |             |             |
| Timing Pul  | 2                | 2                 | 1                   | PCE                |             | H1040-1    |                     | Hardware           | \$    | 6.09  | \$                 | 12.18 | Received |             | https://www |
| Timing Bel  | 2                | 2                 | 1                   | PCE                |             | H1200-1    |                     | Hardware           | \$    | 12.88 | \$                 | 25.76 | Received |             | https://www |
| M3 Nut DI   | 0                | 26                | 1                   | PCE                |             | H1070-1    |                     | Hardware           | \$    | 0.03  | \$                 | -     |          |             |             |
| M4 Nut DI   | 0                | 24                | 1                   | PCE                |             | H1080-1    |                     | Hardware           | \$    | 0.03  | \$                 | -     |          |             |             |



- Mike began building the 3D parts using PETG on his Prusia printer.
- The model (STL) files are available on the Internet.
- The parts turned out remarkably well and didn't seem to need further smoothing to be functional.



- The two worm gears were a concern due to the critical nature of these parts and the difficulty of printing them in PETG.
- It was decided to have these two parts printed by a 3D printing service (Shapeways). This allowed them to be printed using Nylon 12.
- They were among the most expensive parts in the build (\$36). The two timing belts were the next most expensive parts (\$26).



• Mike checks the Bill of Material against the parts that are assembled on the table.













- After some time in the shop, the parts were roughed out and ready for post-processing.
- Due to a miscalculation, the 2020 stock ran out (we had ordered extra, but still ended up being four pieces shy of what was needed.
- There was also the fabricating of the mast, which was deferred until a later time.



### February 2020



- February activities
  - More 2020 aluminum T-Slip material ordered.
  - Mike post-processing the parts already made (smoothing and deburring)
  - Ralph began assembly of electronics module.
  - Ralph and Mike put final touches on MCWA.org website refresh for a March 1, 2020 launch.

#### February 2020



- Arduino Uno controller.
- CNC board with motor drivers installed.
- Arduino proto shield with ESP-8266 installed.

#### February 2020



- The controller "sandwich" after assembly.
- The controller is housed in a waterproof enclosure with connecting cables to the rotor passing through glands.
- The ESP-8266 communicates wirelessly to the laptop terminal to receive movement instructions.



- Lots of work travel early in the month for Mike cut into project time.
- When Illinois went into COVID-19 lockdown, no in-person meetings were possible.

 Used the downtime to consider replacing the laptop with a Raspberry Pi (especially cool for the Maker Faire)















### April 2020



- MCWA April meeting canceled, May program at jeopardy.
- More time for experimenting with other items (e.g., diplexer and yagis)
- Mike took a job offer back in New Jersey and relocated there in late April.

### April 2020



- Inexpensive 2m/70cm diplexer by KW4FB than can handle 10-15 watts.
- Total cost <\$10 plus coax and connectors.
- Have PCB and parts for four more units.



#### **Project Future**



- "It's not dead, Jim." just on hiatus
- Mike has the mechanical parts in NJ.
- Ralph has the electronics in IL.
- We are looking forward to a time when we can put the two modules together and finally finish the project.

#### Did we meet our objectives?

 Despite the best planning, the best execution, and contingency plans...

## • Life happens •

• We had fun and learned lots of new things.

#### **Acknowledgements**

- Libre Space Foundation and their contributors for their SatNOGS project, reference designs, and engineering data. (https://satnogs.org)
- Gary Dembski (W9GD) for his guidance and advice, help with parts procurement, and other special assistance without which this project wouldn't have had the progress that it had.

SatNOGS images © Libre Space Foundation Creative Commons Attribution-Share Alike IZ5RZR, SatNOGS Rotor v3 preview (https://www.youtube.com/watch?v=X1VPQcm3Up8) Other illustrations/images courtesy of Pixabay (https://pixabay.com)

# The End. Or is it?

## **Project Retrospection**

#### What did we set out to do?

- Successfully build and test the SatNOGS version 3 rotor.
- Present the project at the May 2020 MCWA meeting.
- Perform field testing during Field Day 2020.
- Demonstrate system at the Lake County Maker Faire as part of MCWA's amateur radio exhibition for Faire goers.

### What actually happened?

- Successfully build and test the SatNOGS version 3 rotor.
- COVID-19 distancing and relocation of one of the team members prevented the timely completion of the project.
- Present the project at the May 2020 MCWA meeting.
- Project wasn't wrapped up in time for May meeting.
- Perform field testing during Field Day 2020.
- Couldn't field test a rotor that wasn't completely finished.
- Demonstrate system at the Lake County Maker Faire as part of MCWA's amateur radio exhibition for Faire goers.
- Faire was canceled for this year so MCWA wasn't able to demo anything

#### What went well?

- Project started early (November 2019) knowing projects always have speedbumps.
- Identified "high risk" areas (like parts procurement) and tackled them first.
- Created a comprehensive Bill of Materials.
- Had the two worm gears printed in Nylon 12 by external 3D printing house.
- Established a Slack channel to keep the lines of communication open, monitor the schedule, and to flag issues that could delay project completion.

#### What went well?

- Ordered a small surplus of parts (2020 aluminum extrusion, controller boards, NEMA 17 stepper) for testing and for replacing parts that were ruined or damaged.
- Identified areas of expertise and divided the work accordingly.
- Found ways to save money on the build (electronic bundling, using PETG vs ABS, etc.)
- Asked for help and advice to ensure the project was headed in the right direction and weren't being overly optimistic.

#### What went well?

- Created a Raspberry Pi 4, 7" touchscreen terminal with tracking software for shows.
- Put together a 10w-15w 2m & 70cm diplexer SMD project kit (4 extras available if anyone Is interested, about \$9 plus coax and connectors).
- Constructed 2m and 70cm yagis, 3D printing the element and mast mounts, using aluminum elements and bronze driven elements.

### What could have gone better?

- The COVID-19 pandemic completely derailed the project and its successful completion. No amount of planning could have changed that. Life happens.
- Mike (KD2RPE) moving out of the area for a job opportunity in April meant that project completion would need to be put on hold. Got to make a living.
- The technique for cutting the 2020 aluminum extrusion required significant postprocessing to remove burrs and deformities.
- 3D printed 2m & 70cm yagis weren't scaled up to fit the mast size being used.

### Summary

- Planning is essential.
- Start early as things always take longer than anticipated.
- Ask for help when needed.
- Recognize that other priorities will always be there (family time, work commitments, other projects, etc.)
- Divide up the work because many hands make light work.
- Order more materials than anticipated to avoid delays if supplies run short.

#### And most importantly...

 Despite the best planning, the best execution, and contingency plans...

## • Life happens •

• We had fun and learned lots of new things.

#### **Acknowledgements**

- Libre Space Foundation and their contributors for their SatNOGS project, reference designs, and engineering data. (https://satnogs.org)
- Gary Dembski (W9GD) for his guidance and advice, help with parts procurement, and other special assistance without which this project wouldn't have had the progress that it had.

SatNOGS images © Libre Space Foundation Creative Commons Attribution-Share Alike IZ5RZR, SatNOGS Rotor v3 preview (https://www.youtube.com/watch?v=X1VPQcm3Up8) Other illustrations/images courtesy of Pixabay (https://pixabay.com)

# The End. Or is it?